direct product, metabelian, nilpotent (class 3), monomial
Aliases: C32×C8⋊C22, C8⋊C62, D4⋊2C62, Q8⋊3C62, C62.99D4, C24⋊6(C2×C6), (C3×D8)⋊6C6, D8⋊2(C3×C6), (C6×D4)⋊14C6, C6.95(C6×D4), (C3×SD16)⋊5C6, SD16⋊1(C3×C6), C12.80(C3×D4), C4.5(C2×C62), (C2×C4).6C62, (C3×C24)⋊18C22, (C3×C12).181D4, (C32×D8)⋊10C2, (C3×M4(2))⋊3C6, M4(2)⋊1(C3×C6), C4.14(D4×C32), C12.59(C22×C6), (C32×SD16)⋊9C2, C22.5(D4×C32), (C3×C12).189C23, (C6×C12).275C22, (D4×C32)⋊29C22, (C32×M4(2))⋊5C2, (Q8×C32)⋊26C22, (D4×C3×C6)⋊23C2, C2.15(D4×C3×C6), C4○D4⋊4(C3×C6), (C2×D4)⋊5(C3×C6), (C3×C4○D4)⋊11C6, (C3×D4)⋊11(C2×C6), (C3×Q8)⋊12(C2×C6), (C2×C6).34(C3×D4), (C2×C12).76(C2×C6), (C3×C6).312(C2×D4), (C32×C4○D4)⋊12C2, SmallGroup(288,833)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32×C8⋊C22
G = < a,b,c,d,e | a3=b3=c8=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, de=ed >
Subgroups: 348 in 204 conjugacy classes, 120 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, D4, Q8, C23, C32, C12, C12, C2×C6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×C6, C3×C6, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C8⋊C22, C3×C12, C3×C12, C62, C62, C3×M4(2), C3×D8, C3×SD16, C6×D4, C3×C4○D4, C3×C24, C6×C12, C6×C12, D4×C32, D4×C32, D4×C32, Q8×C32, C2×C62, C3×C8⋊C22, C32×M4(2), C32×D8, C32×SD16, D4×C3×C6, C32×C4○D4, C32×C8⋊C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, C2×D4, C3×C6, C3×D4, C22×C6, C8⋊C22, C62, C6×D4, D4×C32, C2×C62, C3×C8⋊C22, D4×C3×C6, C32×C8⋊C22
(1 34 59)(2 35 60)(3 36 61)(4 37 62)(5 38 63)(6 39 64)(7 40 57)(8 33 58)(9 30 55)(10 31 56)(11 32 49)(12 25 50)(13 26 51)(14 27 52)(15 28 53)(16 29 54)(17 70 41)(18 71 42)(19 72 43)(20 65 44)(21 66 45)(22 67 46)(23 68 47)(24 69 48)
(1 30 22)(2 31 23)(3 32 24)(4 25 17)(5 26 18)(6 27 19)(7 28 20)(8 29 21)(9 46 59)(10 47 60)(11 48 61)(12 41 62)(13 42 63)(14 43 64)(15 44 57)(16 45 58)(33 54 66)(34 55 67)(35 56 68)(36 49 69)(37 50 70)(38 51 71)(39 52 72)(40 53 65)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 23)(19 21)(20 24)(25 31)(27 29)(28 32)(33 39)(35 37)(36 40)(41 47)(43 45)(44 48)(49 53)(50 56)(52 54)(57 61)(58 64)(60 62)(65 69)(66 72)(68 70)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(66 70)(68 72)
G:=sub<Sym(72)| (1,34,59)(2,35,60)(3,36,61)(4,37,62)(5,38,63)(6,39,64)(7,40,57)(8,33,58)(9,30,55)(10,31,56)(11,32,49)(12,25,50)(13,26,51)(14,27,52)(15,28,53)(16,29,54)(17,70,41)(18,71,42)(19,72,43)(20,65,44)(21,66,45)(22,67,46)(23,68,47)(24,69,48), (1,30,22)(2,31,23)(3,32,24)(4,25,17)(5,26,18)(6,27,19)(7,28,20)(8,29,21)(9,46,59)(10,47,60)(11,48,61)(12,41,62)(13,42,63)(14,43,64)(15,44,57)(16,45,58)(33,54,66)(34,55,67)(35,56,68)(36,49,69)(37,50,70)(38,51,71)(39,52,72)(40,53,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62)(65,69)(66,72)(68,70), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)>;
G:=Group( (1,34,59)(2,35,60)(3,36,61)(4,37,62)(5,38,63)(6,39,64)(7,40,57)(8,33,58)(9,30,55)(10,31,56)(11,32,49)(12,25,50)(13,26,51)(14,27,52)(15,28,53)(16,29,54)(17,70,41)(18,71,42)(19,72,43)(20,65,44)(21,66,45)(22,67,46)(23,68,47)(24,69,48), (1,30,22)(2,31,23)(3,32,24)(4,25,17)(5,26,18)(6,27,19)(7,28,20)(8,29,21)(9,46,59)(10,47,60)(11,48,61)(12,41,62)(13,42,63)(14,43,64)(15,44,57)(16,45,58)(33,54,66)(34,55,67)(35,56,68)(36,49,69)(37,50,70)(38,51,71)(39,52,72)(40,53,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,53)(50,56)(52,54)(57,61)(58,64)(60,62)(65,69)(66,72)(68,70), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72) );
G=PermutationGroup([[(1,34,59),(2,35,60),(3,36,61),(4,37,62),(5,38,63),(6,39,64),(7,40,57),(8,33,58),(9,30,55),(10,31,56),(11,32,49),(12,25,50),(13,26,51),(14,27,52),(15,28,53),(16,29,54),(17,70,41),(18,71,42),(19,72,43),(20,65,44),(21,66,45),(22,67,46),(23,68,47),(24,69,48)], [(1,30,22),(2,31,23),(3,32,24),(4,25,17),(5,26,18),(6,27,19),(7,28,20),(8,29,21),(9,46,59),(10,47,60),(11,48,61),(12,41,62),(13,42,63),(14,43,64),(15,44,57),(16,45,58),(33,54,66),(34,55,67),(35,56,68),(36,49,69),(37,50,70),(38,51,71),(39,52,72),(40,53,65)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,23),(19,21),(20,24),(25,31),(27,29),(28,32),(33,39),(35,37),(36,40),(41,47),(43,45),(44,48),(49,53),(50,56),(52,54),(57,61),(58,64),(60,62),(65,69),(66,72),(68,70)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(66,70),(68,72)]])
99 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | ··· | 3H | 4A | 4B | 4C | 6A | ··· | 6H | 6I | ··· | 6P | 6Q | ··· | 6AN | 8A | 8B | 12A | ··· | 12P | 12Q | ··· | 12X | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
99 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | C3×D4 | C3×D4 | C8⋊C22 | C3×C8⋊C22 |
kernel | C32×C8⋊C22 | C32×M4(2) | C32×D8 | C32×SD16 | D4×C3×C6 | C32×C4○D4 | C3×C8⋊C22 | C3×M4(2) | C3×D8 | C3×SD16 | C6×D4 | C3×C4○D4 | C3×C12 | C62 | C12 | C2×C6 | C32 | C3 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 8 | 8 | 16 | 16 | 8 | 8 | 1 | 1 | 8 | 8 | 1 | 8 |
Matrix representation of C32×C8⋊C22 ►in GL6(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
64 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 71 | 0 | 0 | 0 | 0 |
5 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 0 | 1 | 39 |
0 | 0 | 56 | 0 | 0 | 19 |
0 | 0 | 72 | 1 | 0 | 57 |
0 | 0 | 71 | 0 | 0 | 58 |
1 | 0 | 0 | 0 | 0 | 0 |
3 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 58 | 15 |
0 | 0 | 0 | 72 | 17 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 15 |
0 | 0 | 0 | 1 | 0 | 56 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,5,0,0,0,0,71,70,0,0,0,0,0,0,15,56,72,71,0,0,0,0,1,0,0,0,1,0,0,0,0,0,39,19,57,58],[1,3,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,58,17,1,2,0,0,15,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,15,56,0,72] >;
C32×C8⋊C22 in GAP, Magma, Sage, TeX
C_3^2\times C_8\rtimes C_2^2
% in TeX
G:=Group("C3^2xC8:C2^2");
// GroupNames label
G:=SmallGroup(288,833);
// by ID
G=gap.SmallGroup(288,833);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,1037,3110,9077,4548,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^8=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,d*e=e*d>;
// generators/relations